
已知点\(P\)是抛物线\(C _{1}\):\(y ^{2} =4x\)的准线上任意一点,过点\(P\)作抛物线\(C _{1}\)的两条切线\(PA\),\(PB\),其中\(A\),\(B\)为切点.
\((1)\)证明:直线\(AB\)过定点,并求出定点的坐标;
\((2)\)若直线\(AB\)交椭圆\(C _{2}\):\( \dfrac {x^{2}}{4}+ \dfrac {y^{2}}{3} =1\)于\(C\),\(D\)两点,\(S _{1}\),\(S _{2}\)分别是\(\triangle PAB\),\(\triangle PCD\)的面积,求\( \dfrac {S_{1}}{S_{2}}\)的最小值.