题型:解答题 题类:其他 难易度:中档
新
已知直线\(l_{ 1 } \)过坐标原点\(O\)且与圆\(x ^ { 2 } +y ^ { 2 } =4\)相交于点\(A\),\(B\),圆\(M\)过点\(A\),\(B\)且与直线\(y+2=0\)相切.
\((1)\)求圆心\(M\)的轨迹\(C\)的方程;
\((2)\)若圆心在\(x\)轴正半轴上面积等于\(2π\)的圆\(W\)与曲线\(C\)有且仅有\(1\)个公共点.
\((ⅰ)\)求出圆\(W\)标准方程;
\((ⅱ)\)已知斜率等于\(-1\)的直线\(l_{ 2 } \),交曲线\(C\)于\(E\),\(F\)两点,交圆\(W\)于\(P\),\(Q\)两点,求\(\dfrac{\left| EF \right|}{\left| PQ \right|}\)的最小值及此时直线\(l_{ 2 } \)的方程.