已知\(F\)是双曲线\( \dfrac {x^{2}}{a^{2}}- \dfrac {y^{2}}{b^{2}}=1(a > 0,b > 0)\)的右焦点,直线\(y= \sqrt {3}x\)交双曲线于\(A\),\(B\)两点,若\(∠AFB= \dfrac {2π}{3}\),则双曲线的离心率为\((\:\:\:\:)\)
A. \( \sqrt {5}\)
B. \( \sqrt {6}\) C. \( \dfrac { \sqrt {10}+ \sqrt {2}}{2}\) D. \( \dfrac { \sqrt {5}+ \sqrt {2}}{2}\)