已知数列\(\{a _{n} \}\)满足\(a _{1} =1\),\( \sqrt {a_{n}}- \sqrt {a_{n+1}}= \sqrt {a_{n}\cdot a_{n+1}}(n∈N^{*})\).
\((\)Ⅰ\()\)求证:数列\(\{ \sqrt { \dfrac {1}{a_{n}}}\}\)为等差数列,并求\(a _{n}\);
\((\)Ⅱ\()\)设\(b_{n}= \sqrt {1+2a_{n+1}}\),数列\(\{b _{n} \}\)的前\(n\)项和为\(S _{n}\),求证:\(S_{n} < n+1- \dfrac {1}{n+1}\).