\(.\)已知数列\(\{a_{n}\}\)是首项\(a_{1}=1\),公差为\(d\)的等差数列,数列\(\{b_{n}\}\)是首项\(b_{1}=2\),公比为\(q\)的正项等比数列,且公比\(q\)等于公差\(d\),\(a_{3}+a_{6}=2b_{3}.\)
\((1)\)求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式;
\((2)\)若数列\(\{c_{n}\}\)满足\(c_{n}=a_{n}\boldsymbol{⋅}b_{n}(n\in N^{*})\),求数列\(\{c_{n}\}\)的前\(n\)项和\(T_{n}.\)