如图\(1\),在长方形\(ABCD\)中,\(AB= \dfrac {1}{2}BC= \sqrt {2}\),\(E\),\(F\)分别为\(AD\)、\(BC\)的中点,\(G\)为\(ED\)的中点,点\(H\)在线段\(AF\)上,且满足\(AH=λAF.\)将正方形\(ABFE\)沿\(EF\)折起,使得直线\(EF\)与平面\(ABCD\)间的距离为\(1\),得到如图\(2\)所示的三棱柱\(AED-BFC\).
\((1)\)求证:\(AF⊥\)平面\(BED\):
\((2)\)若三棱锥\(G-HFC\)的体积为\( \dfrac { \sqrt {2}}{6}\),求\(λ\)的值.