已知双曲线\(C: \dfrac {x^{2}}{a^{2}}- \dfrac {y^{2}}{b^{2}}=1(a > 0,b > 0)\)的左、右焦点分别为\(F _{1}\),\(F _{2}\),过\(F _{1}\)的直线与双曲线\(C\)的两条渐近线分别交于\(M\),\(N\)两点,若以线段\(F _{1} O(O\)为坐标原点\()\)为直径的圆过点\(M\),且\( \overrightarrow {F_{1}N}=2 \overrightarrow {MN}\),则双曲线\(C\)的离心率为\((\:\:\:\:)\)
A. \( \sqrt {2}\)
B. \(2\) C. \( \sqrt {3}\) D. \( \dfrac {2 \sqrt {3}}{3}\)