已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且满足\(S_{n}=2a_{n}-2\).
\((\)Ⅰ\()\)求数列\(\{a_{n}\}\)的通项公式;
\((\)Ⅱ\()\)设\(b_{n}=\log _{2}a_{n}\),\(c_{n}= \dfrac {1}{b_{n}b_{n+1}}\),记数列\(\{c_{n}\}\)的前\(n\)项和为\(T_{n}\),若对任意的\(n∈N^{*}\),\(T_{n}\leqslant k(n+4)\)恒成立,求实数\(k\)的取值范围.