已知\(\{a _{n} \}\)是各项均为正数的无穷数列,且满足\(a _{1} =a\),\(a _{n+1} -a _{n} = \sqrt {d(a_{n+1}+a_{n})}\).
\((1)\)若\(d=1\),\(a _{3} =6\),求\(a\)的值;
\((2)\)设数列\(\{b _{n} \}\)满足\(b _{n} =a _{n+1} -a _{n}\),其前\(n\)项的和为\(S _{n}\).
①求证:\(\{b _{n} \}\)是等差数列;
②若对于任意的\(n∈N ^{*}\),都存在\(m∈N ^{*}\),使得\(S _{n} =b _{m}\)成立.求证:\(S _{n} \leqslant (2 ^{n} -1)b _{1}\).