
设椭圆\(M\):\(\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1(a>b>0)\)的左顶点为\(A\)、中心为\(O.\)若椭圆\(M\)过点\(P(-\dfrac{1}{2},\dfrac{1}{2})\),且\(AP⊥PO.\)
\((1)\)求椭圆\(M\)的方程;
\((2)\)过点\(A\)作两条斜率分别为\(k_{1}\),\(k_{2}\)的直线交椭圆\(M\)于\(D\),\(E\)两点,且\(k_{1}k_{2}=1\),求证:直线\(DE\)恒过一个定点.