职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
  • 题型:解答题 题类:历年真题 难易度:难

    已知函数\(f(x)= \int _{ 0 }^{ x }(t^{2}-at-\cos t)dt\),\(g(x)=(a-x)\cos x\).
    \((\)Ⅰ\()\)当\(x\geqslant 0\)时,\(f(x)\geqslant g(x)\)恒成立,试求实数\(a\)的取值范围;
    \((\)Ⅱ\()\)若数列\(\{a_{n}\}\)满足:\(a_{0}= \dfrac { \sqrt {2}}{2}\),\(a_{n+1}= \dfrac { \sqrt {2}}{2} \sqrt {1- \sqrt {1-a_{n}^{2}}}(n=0,1,2,…)\),证明:\(a_{n} < \dfrac {π}{2^{n+2}}\).
  • 相关试卷