等边三角形\(ABC\)的边长为\(3\),点\(D\)、\(E\)分别是边\(AB\)、\(AC\)上的点,且满足\( \dfrac{AD}{DB}= \dfrac{CE}{EA}= \dfrac{1}{2}(\)如图\(1).\)将\(\triangle ADE\)沿\(DE\)折起到\(\triangle A_{1}DE\)的位置,使二面角\(A_{1}-DE-B\)成直二面角,连接\(A_{1}\)B、\(A_{1}C(\)如图\(2)\).
图\(1\) 图\(2\)
\((1)\)求证:\(A\)\({\,\!}_{1}\)
\(D⊥\)平面\(BCED\); \((2)\)在线段\(BC\)上是否存在点\(P\),使直线\(PA\)\({\,\!}_{1}\)
与平面\(A\)\({\,\!}_{1}\)
\(BD\)所成的角为\(60^{\circ}\)?若存在,求出\(PB\)的长;若不存在,请说明理由.