职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
  • 题型:解答题 题类:模拟题 难易度:难

    已知函数\(f(x)=e ^{x} -e ^{-x}\),\(g(x)=ax(e\)为自然对数的底数\()\),其中\(a∈R\).
    \((1)\)试讨论函数\(F(x)=f(x)-g(x)\)的单调性;
    \((2)\)当\(a=2\)时,记函数\(f(x)\),\(g(x)\)的图象分别为曲线\(C _{1}\),\(C _{2} .\)在\(C _{2}\)上取点\(P _{n} (x _{n} , y _{n} )\)作\(x\)轴的垂线交\(C _{1}\)于\(Q _{n}\),再过点\(Q _{n}\)作\(y\)轴的垂线交\(C _{2}\)于\(P _{n+1} (x _{n+1} , y _{n+1} )(n∈N*)\),且\(x _{1} =1\).
    ①用\(x _{n}\)表示\(x _{n+1}\);
    ②设数列\(\{x _{n} \}\)和\(\{\ln x _{n} \}\)的前\(n\)项和分别为\(S _{n}\),\(T _{n}\),求证:\(S _{n} -T _{n+1} > n\ln 2\).
  • 相关试卷