设\(f(k)=\dfrac{1}{k+1}+\dfrac{1}{k+2}+\dfrac{1}{k+3}+…+\dfrac{1}{2k}(k\in N^{*})\),则\(f(k+1)\)可表示为\((\quad)\)
A. \(f(k)+\dfrac{1}{2k+2}\)
B. \(f(k)+\dfrac{1}{2k+1}+\dfrac{1}{2k+2}\) C. \(f(k)+\dfrac{1}{2k+1}-\dfrac{1}{2k+2}\) D. \(f(k)-\dfrac{1}{2k+1}+\dfrac{1}{2k+2}\)