题型:填空题 题类:月考试卷 难易度:难
\((1)\)设\(x,y\)满足约束条件\(\begin{cases} x,y\geqslant 0 \\ x-y\geqslant -1 \\ x+y\leqslant 3 \end{cases}\),则\(z=x-2y\)的取值范围为_______.
\((2)\)安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为_______.
\((3)\)如图,直角梯形\(ABCD\)中,\(AB/\!/CD,\angle DAB={{90}^{{o}}},AD=AB=4\),\(CD=1\),动点\(P\)在边\(BC\)上,且满足\(\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AD}(m,n\)均为正实数\()\),则\(\dfrac{1}{m}+\dfrac{1}{n}\)的最小值为_______.
\((4)\)已知函数\(f(x)=\begin{cases} {{3}^{x}},x\in [0,1] \\ \dfrac{9}{2}-\dfrac{3}{2}x,x\in (1,3] \end{cases}\),当\(t\in [0,1]\)时,\(f(f(t))\in [0,1]\),则实数\(t\)的取值范围是_____.