已知双曲线\(\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1(a>0,b>0)\)的离心率为\(\sqrt{5}\),左、右焦点分别为\(F_{1}\),\(F_{2}\),以\(F_{1}F_{2}\)为直径的圆与双曲线右支的一个交点为\(P.\)若\(|PF_{2}|=2\),则该双曲线的标准方程为\((\quad)\)
A. \(x^{2}-\dfrac{y^{2}}{4}=1\)
B. \(\dfrac{x^{2}}{4}-y^{2}=1\) C. \(\dfrac{x^{2}}{2}-\dfrac{y^{2}}{8}=1\) D. \(\dfrac{x^{2}}{8}-\dfrac{y^{2}}{2}=1\)