数列\(\{a_{n}\}\)满足:\(①a_{n} < 0\);\(②a_{2}⋅a_{11}= \dfrac {8}{27}\);\(③2a_{n}^{2}-a_{n}a_{n+1}-3a_{n+1}^{2}=0\).
\((1)\)求\(\{a_{n}\}\)的通项公式;
\((2)\)设\(T_{n}=|a_{1}⋅a_{2}⋅a_{3}…a_{n}|\),问:是否存在常数\(k∈N_{+}\),使得\(T_{n}\leqslant T_{k}\)对于任意\(n∈N_{+}\)恒成立?若存在,请求出\(k\)的值;若不存在,请说明理由.