如图,在几何体\(ABCDEF\)中,底面\(ABCD\)为矩形,\({EF}{/\!/}{CD}{,}{AD}{⊥}{FC}{.}\)点\(M\)在棱\(FC\)上,平面\(ADM\)与棱\(FB\)交于点\(N\).
\((1)\)求证:\({AD}{/\!/}{MN}\);
\((2)\)求证:平面\({ADMN}{⊥}\)平面\(CDEF\);
\((3)\)若\({CD}{⊥}{EA}{,}{EF}{=}{ED}{,}{CD}{=}2{EF}\),平面\({ADE}{∩}\)平面\({BCF}{=}l\),求二面角\(A{-}l{-}B\)的大小.