已知圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)过点\(( \dfrac { \sqrt {3}}{2}, \dfrac { \sqrt {3}}{2})\),且右焦点为\(F( \sqrt {2},0)\).
\((1)\)求椭圆\(C\)的标准方程;
\((2)\)设过定点\(M(0 , 2)\)的直线\(l(\)与\(y\)轴不重合\()\)与椭圆\(C\)交于不同的两点\(A\),\(B\),且点\(B\)关于原点的对称点为\(N\),\( \overrightarrow {AB}=λ \overrightarrow {AM}( \dfrac {1}{2}\leqslant λ < \dfrac {2}{3})\),试求\(|AN|\)的最大值.