已知等差数列\(\{a_{n}\}\)的首项\(a_{1}=1\),公差\(d\neq 0\),等比数列\(\{b_{n}\}\)满足\(a_{1}=b_{1}\),\(a_{2}=b_{2}\),\(a_{5}=b_{3}\).
\((\)Ⅰ\()\)求数列\(\{a_{n}\}\)和\(\{b_{n}\}\)的通项公式;
\((\)Ⅱ\()\)设数列\(\{c_{n}\}\)对任意\(n∈N^{*}\)均有\( \dfrac {c_{1}}{b_{1}}+ \dfrac {c_{2}}{b_{2}}+…+ \dfrac {c_{n}}{b_{n}}=a_{n+1}\),求数列\(\{c_{n}\}\)的前\(n\)项和\(S_{n}\).