
已知点\(A(1, \sqrt {2})\)是椭圆\(C: \dfrac {y^{2}}{a^{2}}+ \dfrac {x^{2}}{b^{2}}=1(a > b > 0)\)上的一点,椭圆\(C\)的离心率与双曲线\(x ^{2} -y ^{2} =1\)的离心率互为倒数,斜率为\( \sqrt {2}\)直线\(l\)交椭圆\(C\)于\(B\),\(D\)两点,且\(A\),\(B\),\(D\)三点互不重合.
\((1)\)求椭圆\(C\)的方程;
\((2)\)若\(k _{1}\),\(k _{2}\)分别为直线\(AB\),\(AD\)的斜率,求证:\(k _{1} +k _{2}\)为定值.