职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
  • 题型:填空题 题类:期中考试 难易度:较难

    \((1)\)不等式\(\dfrac{x-1}{2x+1}\leqslant 0\)的解集为_____   

    \((2)\)已知数列\(\{a_{n}\}\)满足\({{a}_{1}}=\dfrac{1}{2},{{a}_{n+1}}=1-\dfrac{1}{{{a}_{n}}}\left( n\in {{N}_{+}} \right)\),则\({{a}_{16}}=\)_______  

    \((3)\triangle ABC\)中,已知\(a=x\),\(b=2\),\(B=60^{\circ}\),如果\(\triangle ABC\) 有两组解,则\(x\)的取值范围_____


    \((4)\)已知等差数列\(\{a_{n}\}\)的首项\({{a}_{1}}=1\),公差\(d > 0\),且第\(2\)项,第\(5\)项,第\(14\)项分别是等比数列\(\{b_{n}\}\)的第\(2\)项,第\(3\)项,第\(4\)项。设数列\(\{c_{n}\}\)对 \(n∈N_{+}\)均有\({\,\!}\dfrac{{{c}_{1}}}{{{b}_{1}}}+\dfrac{{{c}_{2}}}{{{b}_{2}}}+...+\dfrac{{{c}_{n}}}{{{b}_{n}}}={{a}_{n+1}}\)成立,则数列\(\{c_{n}\}\)通项公式为_____

  • 相关试卷