若存在常数\(m∈R\),使对任意的\(n∈N ^{*}\),都有\(a _{n+1} \geqslant ma _{n}\),则称数列\(\{a _{n} \}\)为\(Z(m)\)数列.
\((1)\)已知\(\{a _{n} \}\)是公差为\(2\)的等差数列,其前\(n\)项和为\(S _{n} .\)若\(S _{n}\)是\(Z(1)\)数列,求\(a _{1}\)的取值范围;
\((2)\)已知数列\(\{b _{n} \}\)的各项均为正数,记数列\(\{b _{n} \}\)的前\(n\)项和为\(R _{n}\),数列\(\{b _{n} ^{2} \}\)的前\(n\)项和为\(T _{n}\),且\(3T _{n} =R _{n} ^{2} +4R _{n}\),\(n∈N ^{*}\).
①求证:数列\(\{b _{n} \}\)是等比数列;
②设\(c _{n} =b _{n} + \dfrac {λn-1}{b_{n}}(λ∈R)\),试证明:存在常数\(m∈R\),对于任意的\(λ∈[2 , 3]\),数列\(\{c _{n} \}\)都是\(Z(m)\)数列,并求出\(m\)的最大值.