职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
  • 题型:解答题 题类:模拟题 难易度:较易

    已知函数\(f(x)=\log_{k}x(k\)为常数,\(k>0\)且\(k≠1).\)
    \((1)\)在下列条件中选择一个,使数列\(\{a_{n}\}\)是等比数列,并说明理由.
    ①数列\(\{f(a_{n})\}\)是首项为\(2\),公比为\(2\)的等比数列;
    ②数列\(\{f(a_{n})\}\)是首项为\(4\),公差为\(2\)的等差数列;
    ③数列\(\{f(a_{n})\}\)是首项为\(2\),公差为\(2\)的等差数列的前\(n\)项和构成的数列.
    \((2)\)在\((1)\)的条件下,当\(k=\sqrt{2}\)时,设\(b_{1}=a_{1}\),\(b_{n}=na_{n}-(n-1)a_{n-1}\),\((n\geqslant 2,n\in N^{*})\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}.\)
  • 相关试卷