已知函数\(f(x)=\log_{k}x(k\)为常数,\(k>0\)且\(k≠1).\)
\((1)\)在下列条件中选择一个,使数列\(\{a_{n}\}\)是等比数列,并说明理由.
①数列\(\{f(a_{n})\}\)是首项为\(2\),公比为\(2\)的等比数列;
②数列\(\{f(a_{n})\}\)是首项为\(4\),公差为\(2\)的等差数列;
③数列\(\{f(a_{n})\}\)是首项为\(2\),公差为\(2\)的等差数列的前\(n\)项和构成的数列.
\((2)\)在\((1)\)的条件下,当\(k=\sqrt{2}\)时,设\(b_{1}=a_{1}\),\(b_{n}=na_{n}-(n-1)a_{n-1}\),\((n\geqslant 2,n\in N^{*})\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}.\)