题型:解答题 题类:期末考试 难易度:较易
新
如图,已知动圆\(M\)过点\(E\left({-1,0}\right))\),且与圆\(F:\left({x-1}\right)^{2}+y^{2}=8\)内切,设动圆圆心\(M\)的轨迹为曲线\(C.\)
\((1)\)求曲线\(C\)的方程;
\((2)\)过圆心\(F\)的直线\(l\)交曲线\(C\)于\(A\),\(B\)两点,问:在\(x\)轴上是否存在定点\(P\),使当直线\(l\)绕点\(F\)任意转动时,\(\overrightarrow {PA}⋅\overrightarrow {PB}\)为定值?若存在,求出点\(P\)的坐标和\(\overrightarrow {PA}⋅\overrightarrow {PB}\)的值;若不存在,请说明理由.