职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
  • 题型:解答题 题类:期末考试 难易度:较易

    已知数列\(\{a_{n}\}\)各项都是正数,\(a_{1}=1\),对任意\(n\in N*\)都有\(a_{1}^{2}+a_{2}^{2}+\)…\(+a_{n}^{2}=\dfrac{a_{n+1}^{2}-1}{3}.\)数列\(\{b_{n}\}\)满足\(b_{1}=1\),\(nb_{n+1}=(n+1)b_{n}+n(n+1).\)
    \((1)\)求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式;
    \((2)\)数列\(\{c_{n}\}\)满足\(c_{n}=\dfrac{\sqrt{b_{n}}}{a_{n}}\),数列\(\{c_{n}\}\)的前\(n\)项和为\(T_{n}\),若不等式\(λ\boldsymbol{⋅}2^{n}>T_{n}+\dfrac{n}{2^{n-1}}\)对一切\(n\in N*\)恒成立,求\(λ\)的取值范围.
  • 相关试卷