已知函数\(f(x)=x ^{2} +x|x-2a|\),其中\(a\)为实数.
\((\)Ⅰ\()\)当\(a=-1\)时,求函数\(f(x)\)的最小值;,
\((\)Ⅱ\()\)若\(f(x)\)在\([-1 , 1]\)上为增函数,求实数\(a\)的取值范围;
\((\)Ⅲ\()\)对于给定的负数\(a\),若存在两个不相等的实数\(x _{1}\),\(x _{2} (x _{1} < x _{2}\)且\(x _{2} \neq 0)\)使得\(f(x _{1} )=f(x _{2} )\),求\( \dfrac {x_{1}}{x_{2}}+x_{1}\)的取值范围.