已知点\(P (-1, \dfrac {3}{2})\)是椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)上一点,\(F _{1}\)、\(F _{2}\)分别是椭圆的左、右焦点,\(|PF _{1} |+|PF _{2} |=4\).
\((1)\)求椭圆\(C\)的标准方程;
\((2)\)设直线\(l\)不经过\(P\)点且与椭圆\(C\)相交于\(A\),\(B\)两点.若直线\(PA\)与直线\(PB\)的斜率之和为\(1\),问:直线\(l\)是否过定点?证明你的结论.