已知二项式\((2x{+}\dfrac{1}{\sqrt{x}})^{n}(n{∈}N_{{+}})\)的展开式中第\(2\)项与第\(3\)项的二项式系数之比是\(2\):\(5\),按要求完成以下问题:
\((\)Ⅰ\()\)求\(n\)的值;
\((\)Ⅱ\()\)求展开式中含\(x^{3}\)的项;
\((\)Ⅲ\()\)计算式子\(C{{ }}_{6}^{0}2^{6}{+}C{{ }}_{6}^{1}2^{5}{+}C{{ }}_{6}^{2}2^{4}{+}C{{ }}_{6}^{3}2^{3}{+}C{{ }}_{6}^{4}2^{2}{+}C{{ }}_{6}^{5}2^{1}{+}C{{ }}_{6}^{6}2^{0}\)的值.