正三棱柱\(P-A_{0}A_{1}A_{2}\)中,\(∠A_{0}PA_{1}=α\),侧棱\(PA_{0}\)长为\(2\),点\(B_{0}\)是棱\(PA\)的中点,定义集合\(\{B_{1},B_{2},\)…\(\}\)如下:点\(B_{n}\)是棱\(PA_{n}\)上异于\(P\)的一点,使得\(B_{n-1}B_{n}=PB_{n-1}(n\geqslant 1)\),我们约定:若\(n\)除以\(3\)的余数\(r\),则\(A_{n}=A_{1}(\)例如:\(A_{3}=A_{0}\)、\(A_{2015}=A_{2}\)等等\()\)
\((1)\)若\(α=\dfrac{π}{3}\),求三棱锥\(P-B_{0}B_{1}B_{2}\)的体积;
\((2)\)若\(\{B_{1},B_{2},\)…\(\}\)是一个只有两个元素的有限集,求\(α\)的范围;
\((3)\)若\(\{B_{1},B_{2},\)…\(\}\)是一个无限集,求各线段\(PB_{0}\),\(PB_{1}\),\(PB_{2}\),…的长度之和\((\)用\(α\)表示\().\)
\((\)提示:无穷等比数列各项和公式为\(S=\dfrac{a_{1}}{1-q}.(0< |q|< 1))\)