在平面直角坐标系\(xOy\)中,双曲线\(C\):\(\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1(a>0,b>0)\)的左、右焦点分别为\(F_{1}\),\(F_{2}\),过\(F_{2}\)且垂直于\(x\)轴的直线与\(C\)交于\(P\),\(Q\)两点,\(F_{1}Q\)与\(y\)轴的交点为\(R\),\(F_{1}Q⊥PR\),则\(C\)的离心率为\((\quad)\)
A. \(\sqrt{2}\)
B. \(\sqrt{3}\) C. \(2\) D. \(\sqrt{5}\)