题型:解答题 题类:其他 难易度:较难
已知公差不为\(0\)的等差数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\({{S}_{n}}\),满足\({{S}_{3}}={{a}_{4}}+4\),且\({{a}_{2}},{{a}_{6}},{{a}_{18}}\)成等比数列.
\((1)\)求数列\(\left\{ {{a}_{n}} \right\}\)的通项公式;
\((2)\)设\({{b}_{n}}=\dfrac{{{a}_{n}}}{{{2}^{n}}}\),求数列\(\left\{ {{b}_{n}} \right\}\)的前\(n\)项和\({{T}_{n}}\);
\((3)\)设\({{c}_{n}}=\sqrt{{{S}_{n}}+t}\),若\(\left\{ {{c}_{n}} \right\}\)为等差数列,求实数\(t\)的值.