正整数数列\(\{a _{n} \}\)满足\(a_{n+1}= \begin{cases} { \dfrac {1}{2}a_{n},a_{n}\text{是偶数}} \\ {3a_{n}+1,a_{n}\text{是奇数}}\end{cases}\),已知\(a _{6} =4\),\(\{a _{n} \}\)的前\(6\)项和的最大值为\(S\),把\(a _{1}\)的所有可能取值从小到大排成一个新数列\(\{b _{n} \}\),\(\{b _{n} \}\)所有项和为\(T\),则\(S-T=\)______.