题型:选择题 题类:其他 难易度:较易
定义\(\dfrac{n}{{{p}_{1}}+{{p}_{2}}+\cdots +{{p}_{n}}}\)为\(n\)个正整数\({{p}_{1}},{{p}_{2}},\cdots ,{{p}_{n}}\)的“均倒数”,若已知数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项的“均倒数”为\(\dfrac{1}{5n}\),又\({{b}_{n}}=\dfrac{{{a}_{n}}}{5}\),则\(\dfrac{1}{{{b}_{1}}{{b}_{2}}}+\dfrac{1}{{{b}_{2}}{{b}_{3}}}+\cdots +\dfrac{1}{{{b}_{10}}{{b}_{11}}}=\) \((\) \()\)