题型:解答题 题类:期中考试 难易度:较易
新
设正项数列\(\left\{{{a}_{n}}\right\}\)的前\(n\)项和为\({{S}_{n}}\),且\({{a}_{1}}=1\),当\(n\geqslant 2\)时,\({{a}_{n}}=\sqrt{{{S}_{n}}}+\sqrt{{{S}_{n-1}}}.\)
\((1)\)求数列\(\left\{{{a}_{n}}\right\}\)的通项公式;
\((2)\)设数列\(\left\{{{b}_{n}}\right\}\)满足\(\dfrac{{{b}_{1}}}{{{2}^{1}}}+\dfrac{{{b}_{2}}}{{{2}^{2}}}+\cdots+\dfrac{{{b}_{n-1}}}{{{2}^{n-1}}}+\dfrac{{{b}_{n}}}{{{2}^{n}}}={{a}_{n}}\),求\(\left\{{{b}_{n}}\right\}\)的前\(n\)项和\({{T}_{n}}.\)