设数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),\(a _{1} =1\),\(a _{n+1} = \begin{cases} {2a_{n},n\text{为奇数}} \\ {a_{n}+1,n\text{为偶数}}\end{cases}\).
\((\)Ⅰ\()\)求\(a _{2}\),\(a _{3}\)的值及数列\(\{a _{n} \}\)的通项公式;
\((\)Ⅱ\()\)是否存在正整数\(n\),使得\( \dfrac {S_{n}}{a_{n}} ∈Z.\)若存在,求所有满足条件的\(n\);若不存在,请说明理由.