已知椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的左、右焦点分别为\(F _{1}\),\(F _{2}\),\(M\)为椭圆上任意一点,当\(∠F _{1} MF _{2} =60°\)时,\(\triangle F _{1} MF _{2}\)的面积为\( \sqrt {3}\),且\(2b= \sqrt {3} a.\)
\((1)\)求椭圆\(C\)的方程;
\((2)\)设\(O\)为坐标原点,过椭圆\(C\)内的一点\((0 , t)\)作斜率为\(k\)的直线\(l\)与椭圆\(C\)交于\(A\),\(B\)两点,直线\(OA\),\(OB\)的斜率分别为\(k _{1}\),\(k _{2}\),若对任意实数\(k\),存在实数\(m\),使得\(k _{1} +k _{2} =4mk\),求实数\(m\)的取值范围.