题型:解答题 题类:模拟题 难易度:中档
已知数列\(\{a_{n}\}\)中,\(a_{1}=1\),在\(a_{1}\),\(a_{2}\)之间插入\(1\)个数,在\(a_{2}\),\(a_{3}\)之间插入\(2\)个数,在\(a_{3}\),\(a_{4}\)之间插入\(3\)个数,\(…\),在\(a_{n}\),\(a_{n+1}\)之间插入\(n\)个数,使得所有插入的数和原数列\(\{a_{n}\}\)中的所有项按原有位置顺序构成一个正项等差数列\(\{b_{n}\}.\)
\((1)\) 若\(a_{4}=19\),求\(\{b_{n}\}\)的通项公式\(;\)
\((2)\) 设\(\{b_{n}\}\)的前\(n\)项和为\(S_{n}\),且满足\(\sqrt{2S_{n}{+}\lambda}=b_{n}+μ(λ,μ\)为常数\()\),求\(\{a_{n}\}\)的通项公式.