在\(\triangle ABC\)中,\(c\cos B+b\cos C=2a\cos A, \overrightarrow {AM}= \dfrac {2}{3} \overrightarrow {AB}+ \dfrac {1}{3} \overrightarrow {AC},| \overrightarrow {AM}|=1\),其中\(a\),\(b\),\(c\)为角\(A\),\(B\),\(C\)的对边,则\(b+2c\)的最大值为\((\:\:\:\:)\)
A. \( \sqrt {3}\)
B. \(3\) C. \(2 \sqrt {3}\) D. \( \sqrt {6}\)