如图,三棱柱 \(ABC\)\(-\) \(A\)\({\,\!}_{1}\) \(B\)\({\,\!}_{1}\) \(C\)\({\,\!}_{1}\)中, \(CA\)\(=\) \(CB\), \(AB\)\(=\) \(AA\)\({\,\!}_{1}\),\(∠\) \(BAA\)\({\,\!}_{1}=60^{\circ}\).
\((1)\) 证明: \(AB\)\(⊥\) \(A\)\({\,\!}_{1}\) \(C\);
\((2)\) 若平面 \(ABC\)\(⊥\)平面 \(AA\)\({\,\!}_{1}\) \(B\)\({\,\!}_{1}\) \(B\), \(AB\)\(=\) \(CB\),求直线 \(A\)\({\,\!}_{1}\) \(C\)与平面 \(BB\)\({\,\!}_{1}\) \(C\)\({\,\!}_{1}\) \(C\)所成角的正弦值.