已知圆\(x ^{2} +y ^{2} =2\)与双曲线\(C: \dfrac {x^{2}}{a^{2}}- \dfrac {y^{2}}{b^{2}}=1(a,b > 0)\)的四个交点构成四边形的面积是\(4\),若点\(P\)是圆与双曲线在第一象限的交点,\(F\)为双曲线的右焦点,且\( \overrightarrow {OP}\cdot \overrightarrow {OF}= \dfrac { \sqrt {21}}{6}\),\((O\)为坐标原点\()\),则双曲线的离心率为\((\:\:\:\:)\)
A. \( \dfrac { \sqrt {21}}{3}\)
B. \( \dfrac {3}{2}\) C. \( \sqrt {3}\) D. \( \sqrt {2}\)