
已知椭圆\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的右焦点为\(F(2,0)\),以原点\(O\)为圆心,\(OF\)为半径的圆与椭圆在\(y\)轴右侧交于\(A\),\(B\)两点,且\(\triangle AOB\)为正三角形.
\((I)\)求椭圆方程;
\((\)Ⅱ\()\)过圆外一点\(M(m,0)(m > a)\),作倾斜角为\( \dfrac {5}{6}π\)的直线\(l\)交椭圆于\(C\),\(D\)两点,若点\(F\)在以线段\(CD\)为直径的圆\(E\)的内部,求\(m\)的取值范围.