已知椭圆\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的右焦点为\(F\),\(T\)为椭圆上一点,\(O\)为坐标原点,椭圆的离心率为\( \dfrac { \sqrt {2}}{2}\),且\(\triangle TFO\)面积的最大值为\( \dfrac {1}{2}\).
\((1)\)求椭圆的方程;
\((2)\)设点\(A(0 , 1)\),直线\(l\):\(y=kx+t(t\neq ±1)\)与椭圆\(C\)交于两个不同点\(P\),\(Q\),直线\(AP\)与\(x\)轴交于点\(M\),直线\(AQ\)与\(x\)轴交于点\(N\),若\(|OM|\boldsymbol{⋅}|ON|=2\),求证:直线\(l\)经过定点.