已知数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),\(a _{1} =2\),\(a _{2} =3\),令\(b _{n} =S _{n} +a _{n}\),且数列\(\{b _{n} \}\)为等差数列.
\((1)\)求数列\(\{b _{n} \}\)的通项公式\(b _{n}\);
\((2)\)设数列\(\{ \dfrac {1}{b_{n}b_{n+1}}\}\)的前\(n\)项和为\(T _{n}\),求证:\(T_{n} < \dfrac {1}{16}\).