(本题9分)设椭圆\( \frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1\left(a\right.⟩b>0)\)的左、右焦点分别为\( F₁,F₂\),点P(a,b)满足\( |PF₂|=|F₁F₂|.\)
(1)求椭圆的离心率e:
(2)设直线PF₂与椭圆相交于A,B两点,若直线PF₂与圆(\( {\left(x+1\right)}^{2}+{\left(y-\sqrt{3}\right)}^{2}=16\)相交于M,N两点,且\( \left|MN\right|=\frac{5}{8}\left|AB\right|,\)求椭圆的方程