已知定义在\(R\)上的奇函数\(f(x)\)在\((0,+∞)\)上单调递增,且\(f(1)=0\),若实数\(x\)满足\(xf(x-\dfrac{1}{2})\leqslant 0\),则\(x\)的取值范围是\((\quad)\)
A.\([-\dfrac{1}{2},0]∪[\dfrac{1}{2},\dfrac{3}{2}]\)
B.\([-\dfrac{1}{2},\dfrac{1}{2}]∪[\dfrac{3}{2},+∞)\) C.\([-\dfrac{1}{2},0]∪[\dfrac{1}{2},+∞)\) D.\([-\dfrac{3}{2},-\dfrac{1}{2}]∪[0,\dfrac{1}{2}]\)