已知\(F _{1}\),\(F _{2}\)分别为双曲线\(C\):\( \dfrac {x^{2}}{a^{2}} - \dfrac {y^{2}}{b^{2}} =1(a > 0 , b > 0)\)的左、右焦点,过\(F _{1}\)的直线\(l\)与双曲线\(C\)的左、右两支分别交于\(A\),\(B\)两点,若\( \overrightarrow {AB} \boldsymbol{⋅} \overrightarrow {BF_{2}} =0\),\( \dfrac {|BF_{2}|}{|AF_{2}|} = \dfrac {4}{5}\),则双曲线\(C\)的离心率为\((\:\:\:\:)\)
A.\( \sqrt {13}\)
B.\(4\) C.\(2\) D.\( \sqrt {3}\)