试题 试卷
题型:选择题 题类:期末考试 难易度:中档
年份:2018
设\(a∈Z \),且\(0\leqslant a < 13 \),若\(51^{2012}+a\)能被\(13\)整除,则\(a=\)
查看解析 收藏 纠错
+选题
题型:填空题 题类:期末考试 难易度:中档
\({{(4-3x+2y)}^{n}}(n\in N*)\)展开式中不含\(y\)的项的系数和为 ________ .
若\({{(x-1)}^{7}}={{a}_{0}}+{{a}_{1}}(x+1)+{{a}_{2}}{{(x+1)}^{2}}+\cdot \cdot \cdot +{{a}_{7}}{{(x+1)}^{7}}\),则\(a_{1}\)等于( )
设\(1+{x}^{5}={a}_{0}+{a}_{1}(x-1)+{a}_{2}(x-1{)}^{2}+…+{a}_{5}(x-1{)}^{5} \),则\({a}_{1}+{a}_{2}+⋯+{a}_{5} =\)_________.
\({{\left( \dfrac{1}{2x}-\sqrt{x} \right)}^{6}}\)展开式的常数项为_______.
\((x+1)(2x^{2}-\dfrac{1}{x} )^{6}\)的展开式的常数项为______ .
多项式\(\left( x+1 \right){{\left( x+2 \right)}^{4}}\)的展开式中,含\({{x}^{2}}\)的系数为 ,展开式的各项系数和为 \(.(\)均用数字作答\()\)