职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷

选择知识点

  • 题型:填空题 题类:单元测试 难易度:较难

    年份:2020

    等差数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),且\(6S _{5} -5S _{3} =5\),则\(a _{4} =\) ______ .
  • 题型:填空题 题类:单元测试 难易度:较难

    年份:2018

    已知函数\(f(x)=\begin{cases}|{\log }_{2}x|,0 < x\leqslant 2, \\ \dfrac{1}{3}{x}^{2}- \dfrac{8}{3}x+5,x > 2,\end{cases} \)若函数\(g(x)=f(x)-m\)存在四个不同的零点,则实数\(m\) 的取值范围是________

  • 题型:填空题 题类:单元测试 难易度:较难

    年份:2018

    \((1)\)已知数列\(\{a_{n}\}\)满足\(a_{n}+1=\dfrac{1}{2}+\sqrt{a_{n}{-}a_{n}^{2}}\),且\(a_{1}=\dfrac{1}{2}\),则该数列的前\(2016\)项的和等于________.

    \((2)\)已知函数\(f(x)=|x^{2}+3x|\),\(x∈R\),若方程\(f(x)-a|x-1|=0\)恰有\(4\)个互异的实数根,则实数\(a\)的取值范围是________________.

    \((3)\)设函数\(f(x)\)是定义在\(R\)上的偶函数,且对任意的\(x∈R\)恒有\(f(x+1)=f(x-1)\),已知当\(x∈[0,1]\)时\(f (x)=( \dfrac{1}{2})^{1-x}\),则\(①2\)是函数\(f(x)\)的周期;\(②\)函数\(f(x)\)在\((1,2)\)上是减函数,在\((2,3)\)上是增函数;\(③\)函数\(f(x)\)的最大值是\(1\),最小值是\(0\);\(④\)当\(x∈(3,4)\)时,\(f(x)=( \dfrac{1}{2})^{x-3}.\)其中所有正确命题的序号是            

    \((4)\)天干地支纪年法,源于中国\(.\)中国自古便有十天干与十二地支\(.\)十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥\(.\)天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,\(…\),以此类推\(.\)排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,\(…\),以此类推\(.\)已知\(2017\)年为丁酉年,那么到新中国成立\(100\)年时,即\(2049\)年为_______年.
  • 题型:填空题 题类:单元测试 难易度:较难

    年份:2018

    已知数列\(\{a_{n}\}\)是各项均不为\(0\)的等差数列,\(S_{n}\)为其前\(n\)项和,且满\(a_{n}^{2}={{S}_{2n-1}}\)\((n∈N\)\({\,\!}^{+}\)\().\)若不等式\( \dfrac{λ}{{a}_{n+1}}\leqslant \dfrac{n+8·(-1{)}^{n}}{2n} \)对任意的\(n∈N\)\({\,\!}^{+}\)恒成立,则实数\(λ\)的最大值为_______.