职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷

选择知识点

  • 题型:选择题 题类:月考试卷 难易度:较易

    年份:2021

    等比数列\(\{a_{n}\}\)的各项均为正数,且\(a_{1}a_{5}=4\),则\(\log_{2}a_{2}+\log_{2}a_{3}+\log_{2}a_{4}=(\quad)\)
    A.\(10\) B.\(5\) C.\(3\) D.\(4\)
  • 题型:填空题 题类:月考试卷 难易度:较易

    年份:2021

    在等比数列\(\{a_{n}\}\)中,\(a_{2}=2\),\(a_{4}=64\),则\(a_{6}=\)______.
  • 题型:选择题 题类:月考试卷 难易度:较易

    年份:2021

    等比数列\(\{a_{n}\}\)中,\(a_{2}=3\),\(a_{4}^{2}=a_{6}+a_{7}\),则\(a_{5}=(\quad)\)
    A.\(\dfrac{3}{8}\) B.\(\dfrac{3}{4}\) C.\(12\) D.\(24\)
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2021

    设公比\(q>1\)的等比数列\(\{a_{n}\}\)满足:\(a_{2}+a_{3}+a_{4}=39\),且\(a_{3}+6\)是\(a_{2}\)与\(a_{4}\)的等差中项.
    \((1)\)求数列\(\{a_{n}\}\)通项公式;
    \((2)\)求数列\(\{(-1)^{n-1}\boldsymbol{⋅}a_{n}\}\)的前\(n\)项和\(S_{n}.\)
  • 题型:选择题 题类:月考试卷 难易度:较易

    年份:2021

    已知等比数列\(\{a_{n}\}\),的前\(n\)项和为\(S_{n},n\in N^{*},a_{1}-a_{4}=3,\dfrac{S_{9}}{S_{6}}=\dfrac{3}{2}\),若\(a_{m}=\dfrac{1}{2},m\in N^{*}.\)则\(m=(\quad)\)
    A.\(6\) B.\(5\) C.\(8\) D.\(7\)
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2021

    已知等比数列\(\{a_{n}\}\)是递增数列,满足\(a_{4}=32\),\(a_{3}+a_{5}=80.\)
    \((1)\)求\(\{a_{n}\}\)的通项公式;
    \((2)\)设\(b_{n}=\log_{2}a_{n}\),若\(b_{n}\)为数列\(\{c_{n}\}\)的前\(n\)项积,证明:\(\dfrac{1}{b_{n}}+\dfrac{1}{c_{n}}=1.\)
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2021

    设正项等比数列\(\{a_{n}\}\)的公比\(q\in N^{*}\),且\((a_{1}-1)a_{3}=8\),\(a_{1}+a_{2}^{2}=18\),设数列\(\{b_{n}\}\)满足\(b_{1}=1\),\((b_{n+1}-1)(b_{n}+3)=-4.\)
    \((1)\)求\(\{a_{n}\}\)的通项公式;
    \((2)\)当\(n\geqslant 2\)时,求\(a_{2}b_{2}+\dfrac{a_{3}b_{3}}{2}+\dfrac{a_{4}b_{4}}{3}+\)…\(+\dfrac{a_{n+1}b_{n+1}}{n}.\)
  • 题型:填空题 题类:月考试卷 难易度:较易

    年份:2021

    等比数列\(\{a_{n}\}\)满足\(a_{3}+a_{15}=12\),则\(a_{9}\)的最大值为 ______.
  • 题型:选择题 题类:月考试卷 难易度:较易

    年份:2021

    已知递增等比数列\(\{a_{n}\}\),\(a_{1}>0\),\(a_{2}a_{4}=64\),\(a_{1}+a_{5}=34\),则\(a_{6}=(\quad)\)
    A.\(8\) B.\(16\) C.\(32\) D.\(64\)
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\),\(\{b_{n}\}\)的各项均为正数.在等差数列\(\{a_{n}\}\)中,\(a_{6}+a_{9}=a_{13}+3\),\(a_{2}^{2}=a_{5}\);在数列\(\{b_{n}\}\)中,\(b_{1}=1\),\(3b_{n+1}^{2}+2b_{n}b_{n+1}-b_{n}^{2}=0.\)
    \((Ⅰ)\)求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式;
    \((Ⅱ)\)求数列\(\{a_{n}b_{n}\}\)的前\(n\)项和为\(T_{n}.\)